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1 What Is a Map?

This question was the title of a paper by W.T. Tutte [Tut73] that appeared
after more than one hundred years of fruitful research into maps on surfaces.
In fact, origins of what is now known as theory of maps go back to ancient
Greece. Mathematics of that period was dominated by the beauty of geometry,
including fascination about polyhedra with certain regularity properties. The
most prominent examples are the ubiquitous five Platonic solids. The reader
may think of these as of our first examples of maps. Each of the five polyhedra
has vertices, edges, and faces, and may thus be viewed as a “drawing” of a
graph on the sphere. In the case of the dodecahedron, for instance, it would
be a spherical “drawing” containing 20 vertices, 30 edges, and 12 pentagonal
faces.

Most spatial models of the dodecahedron would have all edges of the same
length and all faces bounded by congruent, regular pentagons. These geomet-
ric features are, however, not of concern in the theory of maps. From now on
we will be interested only in the way how vertices, edges, and faces interact,
regardless of the geometric shape of edges, faces, and their boundaries. In
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particular, we will not require that edges be straight-line segments, faces be
flat, and their boundaries be regular polygons. Only the cell structure of the
resulting object will matter.

In the course of our exposition we will assume that the reader is, at least
at an elementary level, familiar with fundamentals of topology and with the
concept, of a compact, orientable or nonorientable, 2-dimensional surface, or,
shortly, a surface. Also, we will assume familiarity with basic notions of graph
theory and, later, group theory as well.

Thus, what is a map? Intuitively, it is “a drawing of a graph on a sur-
face”. To make this precise, let us regard graphs as topological 1-dimensional
complexes. Then, an embedding of a graph I' on a surface S is a continuous
one-to-one mapping f : I' — S. One usually identifies the image f(I") on
the surface S with the graph I itself. Connected components of S\ f(I") are
called faces. The embedding f is cellular if every face is homeomorphic to an
open disc. Note that cellularity implies connectivity of the embedded graph.
Also, in the cellular case, the boundary of each face is formed by a closed
walk in the embedded graph. Finally, any cellular embedding of a graph will
be called a map.

How can one actually describe maps? In other words, what do we have to
specify in order to uniquely determine an embedding of a connected graph?
The answer is simple if we restrict ourselves to orientable surfaces. If a graph
I is cellularly embedded on an orientable surface, a choice of a preferred
orientation of the surface induces, at each vertex, a cyclic permutation of edges
leaving that vertex. It is customary to represent an edge leaving a vertex by
an arrow on the edge pointing out of the vertex — or, to think of an edge with
direction, although our graphs are undirected. This way, a map on an oriented
surface induces a permutation of edges with directions, such that the (entries
in) cycles of the permutation exactly correspond to (edges directed out of)
vertices. Such a permutation is called a rotation. Conversely, each rotation of
a connected graph gives rise to a unique map on an oriented surface. To see
this, imagine that each edge is a centre of a narrow band. A cycle of a rotation
then determines the cyclic order of the bands leaving a disc neighbourhood
of a vertex. As the result we obtain a band complex in which the graph is
embedded. It just remains to fill the “holes” by cells to obtain the embedding.
The situation is more complicated in the nonorientable case because of lack
of global orientation. In addition to a rotation, one would have to specify the
way the “local” orientations given by the cycles of the rotation interact. In
terms of the band complex, this would tell us which of the bands have to
be “twisted”. Rather than going into further details that can be found in the
monograph by J. L. Gross and T. W. Tucker [Gr'T87], we pass on to a different
approach.

The description using rotation focuses on the graph in the first place; the
embedding is then constructed with the help of a band complex. A map,
however, can also be viewed as a cellular decomposition of a surface. This
suggests looking for a description that would capture cellularity right at the
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outset. Consider a map on a surface S, formed by an embedded graph I', and
suppose that I" is “drawn” on & in thick lines. Pick a point in the interior
of each face and call it the centre of the face. In each face, join the centre
by dashed and thin line segments with every vertex and the midpoint of
every edge, respectively, on the boundary of the face. The resulting refined
structure is the barycentric subdivision of the map. Cells of the subdivision
are topological triangles called flags. Each flag has a thick, a thin, and a
dashed side (as in Fig. 1 of section 3, ignoring labels). To describe the map
in terms of flags and their interaction, let F be the set of flags of the map.
We introduce three permutations X, Y, and Z on F as follows. For each flag
b € F and for each W € {X,Y, Z}, the flag W (b) is the unique flag different
from b that shares with b the thin, the thick, or the dashed side, depending
on whether W is equal to X, Y, or Z. Obviously, X, Y, Z are involutions
with no fixed points, and it is easy to see that X commutes with Y. Moreover,
cellularity implies that the group (X,Y, Z) is a transitive permutation group
on F. Conversely, any such permutation group gives rise to a map; we will
discuss the construction in detail in an important special case in section 3. In
this place we just add two remarks. First, the supporting surface of the map
is orientable if and only if the subgroup generated by the two products Y Z
and ZX has index two in (X, Y, Z). Second, the above discussion also applies
to infinite maps which we will encounter in a few places in section 2.

Now, after all, what is a map? We have seen a topological definition and a
combinatorial description. The answer suggested by Tutte’s paper [Tut73] is
purely algebraic and follows the third way we have just outlined: A map is a
transitive permutation group generated by three fixed-point-free involutions,
two of which commute.

2 What Is a Regular Map?

If an article with this title had been written, perhaps it, too, would have
found its answer in permutation groups. This will transpire after we explain
the basics. Before we begin, we would like to note that the concept of regularity
has a number of meanings in mathematical disciplines. Here, regularity will
mean “highest level of symmetry”.

How would one define a “symmetry” of a map? Taking, say, the dodecahe-
dron again, there is a large number of “symmetries” — rotations and reflections
— that preserve the solid. All of them carry vertices, edges, and faces to the
corresponding objects; in particular, they carry flags onto flags. This tells us
what we should be looking for in general. Let M be a map with flag set F. We
define an automorphism of M to be a permutation of F that maps pairs of
flags sharing a thick (dashed, thin) side to pairs sharing the same type of side.
It is easy to see that such a permutation behaves as expected: it preserves the
cell structure of the map and also induces an automorphism of the embedded
graph. The collection of all automorphisms of M forms, under composition of
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mappings, the automorphism group of M, denoted Aut(M). The important
observation to make is that the group Aut(M) acts freely on F, that is, for any
two flags b,b' € F there exists at most one a € Aut(M) such that «(b) =b'.

What is now the largest “level of symmetry” a map can have? The most
one can expect is that for any ordered pair of flags there is ezactly one auto-
morphism that maps the first flag onto the second. Such actions of groups are
known as regular actions. We therefore define a map M to be regular if the
group Aut(M) acts regularly on the flag set of M. Maps with the theoretically
largest “level of symmetry” are thus the regular maps.

Another, and equivalent, definition of regularity of maps makes no prior
reference to automorphisms at all. Let M be a map and let (X,Y, Z) is the
corresponding transitive permutation group representing M. Then, M is reg-
ular if the group (X,Y, Z) acts freely (and hence regularly) on the flag set
of M. Equivalence of the two definitions follows from known facts about gen-
eral group actions and we refer to R.P. Bryant and D. Singerman [BrS85] for
details. This gives an immediate one-to-one correspondence between regular
maps and groups generated by three involutions, two of which commute. It
also opens up numerous connections to other branches of mathematics such
as hyperbolic geometry, theory of Riemann surfaces, and Galois theory, as we
shall see in the next section.

The two ways of introducing regular maps arrive at the goal from two
opposite directions. In the first scenario, the automorphism group of a map
acts freely on the set of flags. The way to make the automorphism group the
largest possible is to require that it act transitively on the set of flags. On the
other hand, the map can be identified with a certain transitive permutation
group on a set, the set of flags of the map. The way to make such a group
the smallest possible is to stipulate that it act freely on the flag set. Both
approaches meet in the concept of a regular map.

If the supporting surface of a map is orientable, one may introduce a weaker
concept of regularity by focusing on orientation preserving automorphisms
only. In such a case we say that the map is orientably reqular if its group
of orientation preserving automorphisms acts regularly on mutually incident
vertex-edge pairs, or, equivalently, on edges with a preassigned direction. A
map that is orientably regular but not regular is called chiral.

The algebraic viewpoint of regular maps evokes the feeling that one can
actually forget about surfaces and topology. This is, to some extent, the case.
Such a standpoint, however, would not be productive in general, since it would
cut off a considerable supply of combinatorial and topological ideas that have
contributed to the theory of regular maps in the past.

Perhaps the most famous examples of regular maps are the five Platonic
polyhedra that permeate our exposition. It is the wealth of non-spherical reg-
ular maps, however, that give this topic fascinating dimensions. Such maps
were considered by medieval astronomers in their attempts to explain the
planetary system. Prominent examples are the stellated polyhedra that ap-
peared in the work of J. Kepler [Kep19] as early as in 1619. More than two
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centuries later, maps and regular maps resurfaced in two independent and, at
the beginning, unrelated streams of research. The first was driven mainly by
the appearance of the four colour problem and the map colouring problem of
P.J. Heawood [Hea90]. In this connection, L. Heffter [Hef98] discovered ori-
entably regular embeddings of complete graphs of prime order. Approximately
at the same time, certain three-valent regular maps on a surface of genus three
were studied by F. Klein [Kle79] and W. Dyck [Dyc80] in a completely differ-
ent connection — constructions of multiply periodic (or, automorphic) complex
functions. As a way of a geometric representation of groups, regular maps also
appeared in the monograph by W. Burnside [Burll]. The term regular map,
however, was first introduced as late as in 1927 by H. R. Brahana in [Bra27],
which appears to be the first systematic treatment of the topic.

Development in the classification of regular maps on a given surface in
the 20th century will be overviewed in section 4. Here we only note that
foundations of modern theory of orientably regular and regular maps have
been laid by G. A. Jones and D. Singerman [JoS78], and by R.P. Bryant and
D. Singerman in [BrS85]. The importance of the two papers, however, and even
more so of the two successive articles by G. A. Jones and D. Singerman [JoS96]
and by G. A. Jones [Jon97], also lies in pointing out the fascinating connections
between the theory of maps, theory of groups, geometry of surfaces, Riemann
surfaces, and Galois theory, which we will briefly summarise in section 3.

Classification of regular, orientably regular, and chiral maps on a given
surface thus appears to be an important problem. Besides natural significance
in the theory of maps, progress towards a solution of the problem would
advance knowledge and find applications in the disciplines mentioned above.
The aim of this paper is to survey results that have been achieved in this
direction. Following a more detailed presentation of the algebraic background,
in section 4 we focus on regular maps on surfaces of relatively small genus.
In section 5 we give a brief account on the classification of regular maps on
surfaces of Euler characteristic x = —p where p is a prime. We also outline
the newest development regarding regular maps on surfaces with xy = —2p,
—3p, and p?, including a discussion on maps of Zassenhaus type. In the final
section 6 we mention possible generalisations to regular hypermaps.

Let us note for completeness that the problem of classification of regu-
lar and orientably regular maps has been approached from other angles as
well, such as classification by the automorphism groups, by the (fixed) un-
derlying graphs, and by families of graphs. These are out of the scope of
our article and would, in fact, deserve a separate survey paper. We therefore
conclude with a short selection of influential results in these areas. An enu-
meration of orientably regular maps with automorphism groups isomorphic
to 2-dimensional projective special linear groups can be extracted from re-
sults of S. H. Sah [Sah69]. An abstract characterization of graphs underlying
regular and orientably regular maps was given by A. Gardiner, R. Nedela,
M. Skoviera and the author in [GNS99]. The classification of orientably reg-
ular embeddings of complete graphs was initiated by N.L. Biggs [Big71] and
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completed by L. A. James and G. A. Jones [JaJ85]. Examples of latest progress
in classification of orientably regular embeddings of complete bipartite graphs,
complete multipartite graphs, and of cubes are due to G. A. Jones, R. Nedela
and M. Skoviera [JNS04], J. H. Kwak and Y. S. Kwon [KwKO05], and S.F. Du,
J.H. Kwak and R. Nedela [DKN04, DKNO05]. The phenomenon of chirality of
maps is studied in great detail by A. Breda d’Azevedo, G. A. Jones, R. Nedela
and M. Skoviera [BJN05]. The interested reader will find further information
in references included in the papers listed.

3 Regular Maps, Groups, and Surfaces

We begin with giving details of the construction of regular maps from groups.
Let G be a group generated by three involutions, two of which commute. In
order to avoid entanglement into subtleties related to infinite degrees of ver-
tices or faces of infinite length, assume that the product of any two generators
of our group has a finite order. Then, G has a presentation of the form

G=(z,yzl2® =y’ =2"=()" = a)" =(@y"=...=1) (1)

where dots indicate a possible presence of other relations. (As usual, in any
such presentation we will assume that the exponents are true orders of the
elements.) The regular map M = M(G;z,y,z) that corresponds to (1) is
constructed as follows. Consider, for each g € G, a topological triangle la-
belled g, and label its sides with generators of G as in Fig. 1. The collection
of all such triangles forms the set of flags of the map to be constructed. To
simplify the matter, we will identify flags with their group labels. For each
g € G and each w € {z,y,z}, w # 1, we now identify the sides labelled
w in the flags g and gw in such a way that the corresponding points where
the thick, thin, or dashed sides meet are identified as well. This way we ob-
tain a connected surface without boundary. The cellular decomposition of the
surface induced by the union I" of all thick segments forms our regular map
M = M(G;z,y,2). The 1-dimensional cell complex I is the underlying graph
of the map. The identification of flags with elements of G was part of our
construction. Other objects such as edges, vertices, and faces of the map M
can be similarly identified with the left cosets of the subgroups (z,y), (y, 2),
and (z,z) in the group G, respectively, and their their mutual incidence is
determined by non-empty intersection.

The two natural actions — by left and right multiplication — of the group G
on the flag set of M (that is, on G itself) have important map-theoretical
interpretations. For regular maps, right multiplication of flags ¢ € G by the
generators z, y, and z gives precisely the permutations X, Y and Z introduced
in section 1. For the left multiplication, note that if two flags h,h’ € G are
related by some type of reflection, then for any g € G the flags gh and gh’ are
related by the same type of reflection. Left multiplication therefore preserves
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Fig. 1. A topological triangle representing a flag

the cell structure of M and induces an automorphism of M. This way the
automorphism group Aut(M) and its action on the map M = M(G;x,y, z)
may be identified with the group G and its action on itself by left multiplica-
tion. Consequently, regular maps of face length m and vertex valence k can
be identified with presentations of finite 3-generator groups as in (1) where
k and m represent true orders of the elements yz and zz. Briefly, in such a
case we speak about regular maps of type {m, k}; listing the face length first
is part of the traditional notation known as Schlifli symbol.

Features such as isomorphism and duality of regular maps can be con-
veniently explained with the help of our approach. Two regular maps M; =
M(Gymi,yi,21), @ = 1,2, are isomorphic if there is a group isomorphism
¢ : G1 — Ga such that ¢(x1) = 22, v(y1) = Y2, and p(z1) = 22. It is easy to
check that this condition is equivalent to ¢ inducing an incidence preserving
bijection between flags of M; and Ms. Setting 2’ = y and y’ = x in the pre-
sentation (1), the map M (G;z',y’', z) formed from flags as in Fig. 1 but with
thin side labelled ' = y and thick side labelled 3y’ = x is the dual map of
M(G;x,y,z). The dual of a map M of type {m, k} is usually denoted M* and
has type {k,m}. An illustration is in Fig. 2 which shows a regular embedding
of the Petersen graph on the projective plane in solid lines and its dual regular
map with underlying graph K in dashed lines. Note that (M*)* = M and
that both M and M* have the same (not merely isomorphic) automorphism
groups. If M* is isomorphic to M, then M is called self-dual.

In section 2 we noted that the theory of regular maps can be completely
reduced to group theory. Indeed, it is obvious that instead of a regular map
M = M(G;=z,y,z) we can just consider the group G together with its presen-
tation (1); these will be referred to as (k, m, 2)-groups. Classification of regular
maps of type {m, k} up to isomorphism and duality is therefore equivalent to
classification of (k,m,2)-groups with k > m.

Consider now the two particular elements » = yz and s = zz of G. It
can be checked that r and s represent a rotation of order k& about the vertex
and a rotation of order m about the centre of a face, both the vertex and the
face centre being incident to the flag labelled 1. The subgroup G° = (r, s) has
index at most 2 in @, furnishing a simple orientablilty test: The supporting
surface of the map is orientable if and only if the index [G : G°] is equal
to 2. In general, if a map of type {m, k} on an orientable surface contains two
rotations r and s as described above, then the map is said to be orientably



598 Jozef Sirai

Fig. 2. A regular map and its dual in the projective plane

reqular. Thus, every regular map on an orientable surface is orientably regular.
Orientably regular maps that are not regular are called chiral in the literature.
A prominent example of a chiral map is the (essentially, unique) triangular
embedding of K; on the torus.

We assume familiarity with the concept of the Euler characteristic of a
connected compact surface, which is equal to 2 — 2g or 2 — h depending on
whether the surface is orientable, of genus g, or nonorientable, of genus h.
Any regular map M on a nonorientable surface of Euler characteristic x has
a natural double cover, the regular map M on the corresponding orientable
surface of Euler characteristic 2. Reversing the process, M arises from M
as a quotient by an antipodal reflection. At the algebraic level, an antipodal
reflection of a map is simply a fixed-point-free orientation reversing automor-
phism commuting with all the orientation preserving automorphisms (and
hence lying in the centre of the group, cf. [BeG89]). Such reflections are by no
means unique in general. Different antipodal reflections applied to a regular
map in the double cover may even yield non-isomorphic regular maps in the
quotient surface, as was pointed out by S. Wilson [Wi78a].

The formalism introduced above enables us also to outline the links be-
tween the theory of regular maps, group theory, hyperbolic geometry, and
complex functions. The extra notion we need is the one of the full (k,m,2)-
triangle group, which is the group with presentation (z,y,z| 22 = y? = 2% =
(y2)* = (22)™ = (2y)? = 1). Because of absence of other relations, the corre-
sponding regular map can be realised as a tessellation of a simply connected
surface. This surface is the sphere, the euclidean plane, or the hyperbolic
plane, depending on whether 1/k + 1/m is greater than, equal to, or smaller
than 1/2. The tessellation is then formed by geometrically congruent regular
m-gons, k of which meet at each vertex. The subgroup of all orientation-
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preserving automorphisms of this tessellation is the (k,m,2)-triangle group
(r,s| ¥ = s™ = (rs)? = 1), which is an index-two subgroup of the full
(k,m,2)-triangle group obtained by letting r = yz and s = zz.

The connections are now as follows. Except for embeddings of semi-stars
in a sphere, automorphism groups of regular maps of a given type {m,k} on
compact surfaces are precisely the finite (k, m,2)-groups, which are quotients
of the full (k,m,2)-triangle group by torsion-free normal subgroups of finite
index. Likewise, finite orientably regular maps of type {m,k} are in a one-
to-one correspondence with normal, torsion-free, finite-index subgroups of the
(k, m, 2)-triangle groups; if the subgroup is, at the same time, not normal in
the full triangle group, the corresponding orientably regular map is chiral.
These quotient constructions can be used to endow maps on compact surfaces
with complex structure and geometry (spherical, euclidean, or hyperbolic).
In particular, maps (not necessarily regular) can be regarded as complex al-
gebraic curves over algebraic number fields. To conclude with a far-fetching
connection, the algebraic curves view opens up a possibility to study the ab-
solute Galois group by its action on maps, as suggested in the Grothendieck’s
programme [Gro84]. We recommend the survey papers by G. A. Jones [Jon97]
and by G.A. Jones and D. Singerman [JoS96] for more details.

4 Regular Maps on Surfaces of Small Genus

In this section we survey regular maps on surfaces of orientable genus up
to 15 and nonorientable genus up to 30. Until very recently, these were the
only values of genera for which a classification of regular maps was known. In
what follows we will be giving presentations of (k,m,2)-groups in the form
((z,y,2), ...) where the (z,y,z) part will stand for z,y,z|z? = y? = 22 =
(xy)?. For description of groups we will use the standard notation. That is,
Zn, Dn, S, and A, will denote the cyclic group of order n, the dihedral
group of order 2n, and the symmetric and the alternating groups of degree n,
respectively.

Let G be a finite (k, m, 2)-group with a presentation of the form (1). The
number of vertices, edges, and faces of the regular map M = M(G;z,y,2)
is simply obtained by dividing the number of flags, that is, the order |G| of
the group, by the orders of the dihedral stabilisers of the respective elements.
The map M therefore has v = |G|/(2k) vertices, e = |G|/4 edges, and f =
|G|/ (2m) faces. By the Euler’s formula we have v — e + f = x where x is the
Euler characteristic of the supporting surface. Substituting for v, e, f gives

x = (1/k+1/m = 1/2)|G|/2 (2)

The surface with the largest Euler characteristic, 2, is the sphere. Regu-
lar maps on the sphere have been well known and their classification quickly
follows from (2). It turns out that there are no chiral maps on the sphere.
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Apart from embeddings of semi-stars (semi-edges incident to a single vertex),
a spherical regular map arises either from an embedded k-cycle, or its dual
(called a k-dipole), or one of the five Platonic polyhedra. We list the cor-
responding (k, m,2)-groups Aut(M) (which are all extended triangle groups
since the sphere is simply connected) for the maps M up to duality, in the
form M /dual(M):

embedded k—dipoles/k—cycles ((z,y, z), (yz)* = (z2)? =1) = Dy, x Z
tetrahedron (self — dual) (z,y,2), (y2)? =(22)® =1) =S,

octahedron/cube (z,y,2), (y2)* = (22)® =1) =2 S; x Z,
icosahedron/dodecahedron ((z,y,2), (y2)° = (22)3 =1) 2 A5 x Z

The next simplest surface is the projective plane, which ia a nonorientable
surface of Euler characteristic 1 (and of nonorientable genus 1). Since the
sphere admits a unique antipodal reflection, regular maps on the projective
plane are quotients of the spherical regular maps by the reflection. One has
to be cautious, however, when looking for the antipodal reflection in terms
of central involutions. For example, the groups G of spherical embeddings of
k-dipoles always factor as G° x (), but the automorphism induced by the
left multiplication by x has fixed points; the same holds for k-cycles. A closer
inspection shows that the spherical embeddings of odd cycles, odd dipoles,
and the tetrahedron have no antipodal reflection. Using the notation r = yz
and s = zz, and taking duality into account, the unique antipodal reflection
u in the remaining cases is given by u = zsr* for 2k-dipoles, u = zrs~'r’s
for the octahedron, and u = zr?sr—'sr—2s for the icosahedron. Since the
antipodal reflection is central, we have G = (z,y, z) = (r,s) x (u) =2 G° X Z,
and the quotients arise by dividing out by (u). Antipodal quotients of our
spherical maps are therefore the projective-planar embeddings of k-cycles and
their duals (bouquets of k circles), K4 and its dual (denoted by K §2), which is
K3 with doubled edges), and K¢ and its dual (formed by the Petersen graph P
embedded as in Fig. 2). Presentations of the corresponding groups Aut(M),
again in the form M /dual(M), are as follows (using r = yz and s = zz):

embedded bouquets/cycles  ((z,y,z), 12k = 52 = zsrk = 1) = Dy,
embedded K Jembedded Ky {(z,y,2), 1* =3 = zrs~Ir2s = 1) = §,
embedded Kg/embedded P {(z,y,2), r° = s® = zr?sr=lsr=2s = 1) & A;4

Note that in contrast with the spherical case, presentations of the groups of
the projective-planar regular maps contain an extra relator coming from the
antipodal involution u. Extra relators feature in all presentations of regular
maps on non-simply connected surfaces, since they reflect presence of non-
contractible curves.

Classification of regular and chiral maps on the torus (an orientable sur-
face of genus 1, with Euler characteristic 0) was initiated by H. Brahana
[Bra26] and all details were eventually supplied by H.S. M. Coxeter [Cox48].
Euler’s formula tells us that a toroidal regular map of type {m, k}, m < k,
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can exist only if either kK = m =4, or Kk = 6 and m = 3. By the theory out-
lined in section 3, for the classification it is sufficient to identify all finite-index,
torsion-free, normal subgroups of the (4,4, 2)- and (6, 3, 2)-triangle groups and
of the related full triangle groups. These are groups of (possibly orientation-
reversing) euclidean isometries, leaving invariant the corresponding tessella-
tion. Using representations of the four groups either by matrices or by complex
numbers it can be shown that all their finite-index torsion-free normal sub-
groups are generated by powers of two specific commuting translations. As
the result, toroidal chiral and regular maps can be parametrised by ordered
pairs of integers (b, ¢) representing powers of the two translations. Up to iso-
morphism and duality, the automorphism groups of all chiral toroidal maps
satisfy be(b — ¢) # 0 and have presentations of the form

Type {4,4} : (r, 5|
Type {6,3} : (r, s|

In the case when be(b — ¢) = 0 we obtain regular toroidal maps. Using r = yz
and s = zx, their groups have presentations

Type {4,4} : ((z,y,2),7* = s* = (rs7")?(r~'s)* = 1)
Type (6,3} : {(z,9,2).1 = 5% = (rs 1r)?(s

Unlike spherical maps, toroidal regular maps do not admit antipodal re-
flections. Consequently, there are no regular maps on the Klein bottle, the
nonorientable surface of Euler characteristic 0 that is double-covered by the
torus. Another way to see this is to invoke the known fact that the only au-
tomorphism of the Klein bottle acting as a rotation about some point must
have order two. This completes the classification of regular maps on surfaces
of non-negative Euler characteristic. Note that while the number of regular
maps on the sphere, on the projective plane, and on the torus is infinite, the
infinitude in the first two cases is due to rather trivial maps.

In contrast with this, the number of regular maps on any compact surface
S of negative Euler characteristic is finite. Indeed, from (2) it is obvious that if
Xx(S) < 0,then1/k+1/m < 1/2 and |G| = —2x(S)/(1/2—1/k—1/m). Among
all pairs (k,m) for which 1/k+ 1/m < 1/2, the reciprocal of the denominator
achieves the largest value, 42, precisely when {k,m} = {3,7}. We thus arrive
at the Hurwitz bound |G| < —84x(S) if x(S) < 0, giving a cap on the order
of the automorphism group of a regular map on a surface with negative Euler
characteristic. Similarly, the order of the automorphism group of a chiral map
on an orientable surface of genus g > 2 cannot exceed 84(g — 1). The bound
is named after H. Hurwitz who first proved its orientable variant for groups
of conformal automorphisms acting on Riemann surfaces; see T. W. Tucker
[Tuc83].

To classify regular maps on a given surface of negative Euler characteris-
tic, one could in principle use the strategy outlined in section 3: Work out the
admissible types {m, k} from the Euler’s formula (2) and then determine the
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torsion-free normal subgroups of the corresponding (k,m,2)-triangle groups
of index not exceeding the Hurwitz bound. The second step in full generality,
however, seems to be far beyond the reach of the currently available meth-
ods. If 1/k + 1/m < 1/2, that is, when the type {m, k} is hyperbolic, the full
(k, m, 2)-triangle group is a subgroup of the group of (direct as well as orien-
tation reversing) hyperbolic isometries, leaving invariant a regular tessellation
of the hyperbolic plane of type {m, k}. As opposed to the euclidean case, very
little is known about normal subgroups of such hyperbolic triangle groups.

How can one then approach the problem? In the early stages, a number
of results were obtained by relation-chasing, that is, trying to determine the
extra relations one has to add in the presentation of a triangle group or a
full triangle group to obtain a quotient group and a quotient map on a given
surface. Combined with other known facts and methods, mostly of group-
theoretical nature, a classification for orientable surfaces of Euler characteris-
tic x = —2 and —4 (and hence genus 2 and 3) was given by H.S. M. Coxeter
and W.0.J. Moser [CMo84] and F.A. Sherk [She59], respectively. None of
the maps for the two genera are chiral. Also, regular maps of genus 2 turn
out to have no antipodal reflections, implying that there are no regular maps
on the nonorientable surface with y = —1. Using similar methods, A.S. Grek
in a series of papers [Gre63, Gr66a, Gr66b] derived a classification of regular
maps on non-orientable surfaces with —2 > y > —4.

A more powerful method based on permutation representations is due to
D. Garbe [Gar69], introduced in the course of classification of regular maps on
the orientable surface of genus 4. Suppose that one wants to classify regular
maps of type {m, k} with exactly d faces. This is equivalent to classifying all
(k, m,2)-groups G of order 2md. Since G contains a dihedral subgroup H of
order 2m, we have a permutation representation of G of degree d given by the
action of G on the cosets of H; the image of H in this representation is the
stabiliser of an element. Now, let T = ((x,y, 2), (yz)* = (22)™ = 1) be the full
(k, m, 2)-triangle group and let N be the torsion-free normal subgroup of T'
such that T/N = G. Because of absence of torsion, the image of the dihedral
group L = (z, z) under the natural projection § : T' — T'/N is again a dihedral
group of order 2m; in fact, we may assume that the image is H. We do not
know G and N yet, but observe that the transitive permutation representation
of G of degree d lifts onto a transitive permutation representation of 7" of the
same degree d but this time on the cosets of the subgroup §~!(H). This
suggests the following algorithm to determine all such groups G.

(A) Construct all transitive permutation representations ¢ : T — Sq where
Sq is the symmetric group of degree d acting on the set {1,2,...,d}, such
that 1 (L) = Stab(1), the stabiliser of the element 1 in the image v (T").

(B) Construct all epimorphisms 1) from the subgroup K = ¢p—1(Stab(1)) < T
onto the dihedral group D,, of order 2m, such that 9(L) = D,, and such
that N = ker(¥) is torsion-free.
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Then, clearly, G = T/N is a (k,m,2)-group and the corresponding regular
map has exactly d faces, that is, |G| = 2md. Indeed, an easy calculation
shows that |G| = [T/N|=[T : N = [T : K|[K : N] = [¢(T) : ¥(K)]|Dp| =
[(T) : Stab(1)] - 2m = 2md, as claimed. The fact that this algorithm con-
structs all regular maps of type {m, k} with exactly d faces follows from the
above discussion. In addition, all such orientable maps are filtered out by the
condition that N be a subgroup of the orientation preserving part of 7', that
is, N < (r,s) where r = yz and s = zz. Running the procedure with T, L,
and D,, replaced by the (k,m,2)-triangle group (r,s| r*¥ = s™ = (rs)? = 1),
the cyclic group (s), and the cyclic group Z,,, respectively, and identifying
the normal subgroups N of T that are not normal in the full (k, m,2)-triangle
group, one obtains all the chiral maps with d faces.

In practice, for each permutation representation in (A) one finds with the
help of the Reidemeister-Schreier method a presentation of K and then one
searches over the epimorphisms in (B). As long as the number d of faces
is relatively small, the calculations — although time consuming and far from
trivial — can be done by hand. This was the main tool used in the classification
of regular and chiral maps on orientable surfaces of genus 5 and 6 (P. Bergau
and D. Garbe [BeG89]), and 7 (D. Garbe in [Gar78]). The corresponding
nonorientable results were obtained for Euler characteristic —5 by J. Scherwa
[Sch85] and for —6 by P. Bergau and D. Garbe [BeG89]. In this connection
it is worth noting that S. E. Wilson [Wi78b] has outlined a similar algorithm
using a geometric language.

Summing up, by the late 1980’s, the collective effort of the researchers
mentioned above resulted in classification of all regular and chiral maps on
orientable surfaces of Euler characteristic y > —12 (that is, up to genus 7),
and regular maps on nonorientable surfaces with y > —6 (up to genus 8). It
is interesting to note that, in the orientable case, there are no chiral maps
of orientable genus between 2 and 6 at all! Further progress came in about
a decade, when M. Conder and P. Dobcsanyi [CoDO01] published a computer-
assisted classification of all regular and chiral maps on orientable surfaces up
to genus 15, and regular maps on nonorientable surfaces up to genus 30. The
authors used their own adaptation of the low-index subgroup algorithm and
applied it to finding ‘small’ index normal subgroups — but not subgroups of
the full triangle groups. Instead, it turned out to be of advantage to consider
normal subgroups of the group (z,vy, z| % = y? = 22 = (zy)? = 1), with the
relator (zz)? or (2z)* added in the case when m = 3 or m = 4, and extract
the rest from there. Re-confirming all the earlier results, the list in [CoDO01]
documents the state-of -the-art of the regular maps classification problem at
the end of the millenium. In particular, by then a complete classification was
known only for a finite number of surfaces.
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5 Regular Maps on Surfaces of Large Genus

A breakthrough in classification of regular maps was achieved when A. Breda
d’Azevedo, R. Nedela and the author [BNS05] classified regular maps on all
surfaces of negative prime Euler characteristic — that is, on an infinite number
of surfaces. Let n(p) denote the number of regular maps, up to isomorphism
and duality, on a surface with Euler characteristic —p, where p is a prime.
The numbers n(p) for p < 29 together with the automorphism groups of the
maps have been determined by the computer-aided classification of [CoD01]
and we therefore state the result of [BNS05] for the larger primes only. Also,
for p = —1 (mod 4) let v(p) be the number of pairs (j,1) such that j > 1> 3,
both j and [ are odd, coprime, and (j — 1)(I — 1) =p+ 1.

Theorem 5.1 ([BNSO05]). Let p be an odd prime, p > 29 Then, up to iso-
morphism and duality, for the number n(p) of regular maps on a surface with
Euler characteristic —p and for the corresponding groups G we have:

(A) n(p) =0ifp=1 (mod 12);

(B) n(p) =1 if p=5 (mod 12), with G = G, = (r,s| rP** = 51 = (rs)? =
srisTird = 1);

(C) n(p) =v(p) if p=T7 (mod 12), with G = G;; = (r,s| 7% = s* = (rs)? =
(rs™)? =1);

(D) n(p) = v(p) + 1 if p= —1 (mod 12); the groups G are G, and the v(p)
groups G ;.

Presentations of the above groups are given in terms of r = yz and s = zx
only; recall that for nonorientable maps the automorphism group os generated
by r and s. This implicitly assumes that the involutions x, y, z can be recovered
from r and s in a unique way. While this is not true in general, in our case
it can be shown that the involutions are indeed unique. We note that the
group G, is an extension of Z(,, 4)/3 by Ss4 while for the groups G;; we have
Gj’l ~ _Dj X _Dl.

An important ingredient of the proof of Theorem 5.1 is the following mile-
stone result in the project of classification of finite simple groups, due to
D. Gorenstein and J.H. Walter [GoW65]: If H is a group with a dihedral
Sylow 2-subgroup and if O(H) is the (unique) maximal normal subgroup of
G of odd order, then H/O(H) is isomorphic to either a Sylow 2-subgroup
of G, or to the alternating group Az, or to a subgroup of Aut(PSL(2,q))
containing PSL(2,q), where q is and odd prime power. The original proof
has about 180 pages and depends on the celebrated Feit-Thompson odd-order
groups theorem. Subsequently, a shorter (but by no means simpler) proof of
the Gorenstein-Walter result was given in [Ben81, BGI81] but it still depends
on the odd-order groups theorem. An interesting challenge would be to find a
proof of Theorem 5.1 without invoking such high-calibre results.

Every orientable surface carries a regular map; an example for any g > 1
is a single-face regular embedding of a bouquet of 2g circles. While M. Conder



Regular Maps on a Given Surface: A Survey 605

and B. Everitt [CoE95] showed that more than three quarters of nonorientable
surfaces support a regular map, there are “gaps”. Absence of regular maps on
nonorientable surfaces with Euler characteristic y = 0 (the Klein bottle) and
X = —1 has been known for a long time. The list of [CoD01] shows that there
are no regular maps on nonorientable surfaces with y = —16, —22, and —25,
either.

From a deep study by S. Wilson and A. Breda [WBr04] it follows that
nonexistence of regular maps extends also to y = —37 and —46 and that all the
above are the only gaps in the range —50 < x < 0. The amazing consequence
of Theorem 5.1 is that there are infinitely many gaps! Specifically, part (A)
of the theorem and the list of [CoDO01] imply that there are no regular maps
on surfaces of Euler characteristic y = —p where p is a prime congruent to 1
(mod 12) and p # 13.

Although a number of steps in the proof of Theorem 5.1 substantially
depended on the primality of —y, extensions to small odd multiples of primes
are within reach. A very recent work by G. A. Jones, R. Nedela and the author
[JNS05] has resulted in a classification of regular maps on (nonorientable)
surfaces with x = —3p for sufficiently large primes.

A complete classification of regular or chiral maps on an infinite family of
orientable surfaces is still not available. Nevertheless, important contributions
to the study of automorphism groups of Riemann surfaces by M. Belolipetsky
and G. A. Jones [BeJ04] imply ingredients for a classification of the regular and
chiral maps on orientable surfaces of genus p + 1 with ‘large’ automrophism
group G in the sense that |G| > 12p for the regular case, and |G| > 6p for the
chiral case, where p is a prime. In order to see what this means for regular
maps, observe that the Euler characteristic of such a surface is x = —2p.
From (2) we then obtain |G| = —2x/(1/2 - 1/k —1/m) > —4x = 8p. In
general, however, one may have regular maps with groups of order between
8p and 12p that are not captured by the results of [BeJ04].

A fair amount of structural information about automorphism groups of
regular maps on a given surface can be extracted from Euler’s formula (2)
by just arithmetic considerations. An example is the following lemma due
to M. Conder, P. Potoénik and the author [CPS04], which overlaps with an
observation made by G.A. Jones [Jon04].

Lemma 5.2. Let G be the automorphism group of a regular map on a surface
with Euler characteristic x # 0 and let p' be a prime divisor of |G| coprime
with x. Then, the Sylow p'-subgroups of G are cyclic if p' is odd, or dihedral
if p' = 2. In particular, the Sylow 2-subgroups of G are automatically dihedral
if x is odd.

This opens up the possibility of application of the Gorenstein-Walter theo-
rem in the study of regular maps on surfaces with any odd Euler characteristic
(which are necessarily nonorientable). Unfortunately, one still needs more in-
formation to determine the exact structure of the groups. Inspired by the first
part of Lemma 5.2 it makes sense to look for cyclicity of the odd-order Sylow



606 Jozef Sirai

subgroups. And indeed, we have a good example at hand: Revisiting the proof
of Theorem 5.1, it is easy to see that the claim (i) immediately implies that
all the odd-order Sylow subgroups of the groups of regular maps on surfaces
of Euler characteristic Y = —p, p an odd prime, are cyclic! The same happens
to be true for the groups of regular maps on surfaces with y = —3p except for
the groups D; x D; when (j,1) = 3. Another substantial contribution here is
a further result of [CPS04]:

Proposition 5.3. Let G be the automorphism group of a regular map on a
surface with Euler characteristic —p® where p is an odd prime and p # 3.
Then, every odd-order Sylow subgroup of G is cyclic.

We see that there is more than enough motivation to investigate (k, m,2)-
groups G such that the Sylow 2-subgroups of G are dihedral and all the
odd-order Sylow subgroups of G are cyclic. Such a class of groups in general
has appeared in the literature in connection with various questions in group
theory. Determination of groups with the property that all its Sylow subgroups
(including the Sylow 2-subgroups) are cyclic goes back to W. Burnside and
even to G. Frobenius (see [Burll]). Relaxations of the Sylow 2-subgroups
condition, however, turns the problem to a challenge which has been resolved
only in special cases. We will say that H is a group of Zassenhaus type if all the
odd-order Sylow subgroups of H are cyclic and if every Sylow 2-subgroup of H
contains a cyclic subgroup of index 2. All the solvable groups of Zassenhaus
type were determined by H. Zassenhaus [Zas36] and the characterisation of all
such non-solvable groups was completed by M. Suzuki [Suz55] and W. J. Wong
[Won66].

If G is a (k,m,2)-group with presentation (1), the regular map M =
M(G;z,y,z) will be called a map of Zassenhaus type if the group G is of
Zassenhaus type. In a recent work of M. Conder, P. Poto¢nik and the au-
thor, the above results together with the Gorenstein-Walter theorem have
been used to classify all regular maps of Zassenhaus type. Since details of the
classification are a little too long to be reproduced here, we just give a brief
summary about the groups. In the case when the group G is solvable, the
maps fall into 8 classes and G is either a dihedral group, or a split extension
of a cyclic group by the Klein four-group, or else a split extension of the Klein
four-group by a dihedral group (with certain congruence restrictions on the
orders). If M is a map of Zassenhaus type with a non-solvable group G, then
either G = PGL(2, q) for some prime ¢ (not a non-trivial power of a prime), or
G is an extension of such a PGL(2, q) by a cyclic group of order coprime with
q(q®> — 1). As an aside, regular maps with automorphism groups isomorphic
to projective (special as well as general) linear two-dimensional groups have
been classified in great detail by the same set of authors in [CPS05].

These results are solid tools for investigation of regular maps of a given
type {m, k} on a surface with a given Euler characteristic x. A nice corollary
is a classification of regular maps of type {m,k} on surfaces with y = —p?
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where p is a prime not dividing both &£ and m, such that p > 23; we refer to
[CPS04] for particulars.

6 Conclusion: Regular Hypermaps

A natural avenue of research is to extend the classification to hypermaps. At
the group-theoretic level, a regular (k,m,l)-hypermap is simply a finite group
G generated by three involutions z,y, z in which the products yz, zz, and zy
have orders k, m and [, respectively. Regular maps are therefore a special case
of regular (k, m,[)-hypermaps for [ = 2. Orientably regular and chiral hyper-
maps are defined analogously as in the case of maps. The theory of regular and
chiral hypermaps is similar to the theory of regular and chiral maps, includ-
ing connections with hyperbolic geometry and complex functions. Pictorial
representations, however, are a little different and not unique. A topological
representation of a hypermap that gives equal status to hypervertices, hyper-
edges, and hyperfaces (reflecting the equal status of the products yz, zz, and
zy in the corresponding triangle group) can be obtained by means of an em-
bedding of a trivalent graphs with faces of lengths 2k, 2m and 2[, alternating
at each vertex.

The classification of regular maps on surfaces of negative prime Euler
characteristic [BNS05] was extended to regular hypermaps by G.A. Jones
[Jon04]. It turns out that the classification is obtained from the list of [BNS05]
by adding just two items, the regular (4, 3,3)- and (6,5, 4)-hypermaps with
groups PSL(2,7) and PGL(2,5) = S;. It is also worth mentioning that the
deep study of gaps in the nonorientable range of Euler characteristics x for
—50 < x < 0 by S. Wilson and A. Breda [WBr04], which we have mentioned
in the previous section, was actually done for regular hypermaps in general.

A combination of the approaches outlined in this brief survey, perhaps
blended with the theory of linear and permutation representations of groups
and with the general knowledge on group actions on compact surfaces, is likely
to yield substantial contributions to the theory regular maps on a fixed surface
in the indicated directions.
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